Display techniques for interactive text manipulation

by CHARLES H. IRBY

Stanford Research Institute
Menlo Park, California

INTRODUCTION

The Augmentation Rescarch Center (ARC) at the Stanford
Research Institute (SRI), has been developing for several
years a computer-based on-line system called NLS. NLS is
part of ARC’s rescarch on enhancing the intellectual effee-
tiveness of people35.67.10.1218.15 Central to the develop-
ments to date is highly interactive text manipulation using
chiefly display terminals.’s.1%.18 The NLS system supports a
range of display terminals (from expensive text/graphics
displays to inexpensive Alpha Numerie displays'?) and
typewriter terminals. The NLS program runs as a subsys-
tem within a TENEX time-sharing system on a DEC
PDP-10 computer.*?

NLS is a program of about one hundred thousand instruc-
tions and about eight programmers are involved in its
continued development and maintenance. Since the pro-
gram has been and will be under development for several
years, considerable attention is given to the employment of
good software engineering practices.

NLS provides a general purpose interface to any of a
large number of specialized capabilitics that the user may
draw upon during his work. Certain capabilities, such as
text manipulation and communication with others, are
important to almost any type of intellectual work, and,
thus, they have received a large amount of our development
resources. NLS provides the user with a consistent and
coherent command language interface while allowing him
to access diverse capabilities. The system is used intensely
in the day-to-day work of about fifty people, some of whom
access the system through the ARPA NETWORK..4
These people are writers, managers, engineers, analysts, and
programmers.

In addition to very flexible text editing and viewing,
NLS provides the user with facilities for communication,
publication-quality formatting control, numerical calcula-
tion, specialized user-supplied editing and viewing, and
programming support (such as a built in debugging system
and direct access to several compilers).

For a more complete description of NLS-and its applica-
tions, the reader should consult References 3 and 5.

Figure 1 describes the basic structure of the NLS applica-
tion program. This paper is primarily concerned with the

capabilitics that the Display Terminal Interface provides
to the rest of the application program.

Based on the command language grammar and the user’s
input, the command language interpreter invokes various
manipulators to modify data structures and, if appropriate,
formatters to map these data structures into specified
rectangular portions (called “windows”) of the display
screen for the user to see. User input in Figure 1 represents
character input, coordinate input, and selection input
(based on coordinate input). _

A manipulator is that set of routines that manipulates
data structures of a certain type, say type “A”. An example

" might be the data structures used to represent a hierarchical

247

structure that is applied to the textual information contained
in the user’s files. Some of the data structures are contained
in the user’s files; others are used to maintain user or sys-
tem state information and characteristics. Such a manipula-
tor might be applied to any of several instances of type A
data structures or might always be applied to a specific
instance.

A formatter consists of those routines that map a data
structure of a certain type into a rectangular “window”’,
say “a”’, on the display sereen. Such a formatter might
invoke subformatters to handle subparts of the data struc-
ture, and it might be applicd to a particular instance or
to any of several instances of such a data structure. A
formatter might be applied to a specific window or applied
to any of several windows.

In order to minimize the number of changes that will
have to be made to the screen, a formatter may compare
what is currently shown in the window to what is desired.
To facilitate this, a formatter maintains a data structure to
reflect the current contents of the window. Alternatively,
the formatter may simply clear the window and format the
new data into it. The size of the window (the number of
characters wide and lines high) is available to a formatter
from the Display Terminal Interface.

The Display Terminal Interface is that set of routines
that provides the application program with primitive opera-
tions for the manipulation of and interaction with a con-
ceptual display terminal. This interface allows the application
program to support physical displays with quite differ-
ent characteristics. The protocol between the terminal and

248 National Computer Conference, 1974

COMMAND
LANGUAGE,
GRAMMAA

COMMAND
LANGUAGE
INTEAPRETER

MAHwULATE DATA MANIPULATE
- Py L] STAUCTURE -~ AN N
oF TYE N

FORMAT AN M

orrLAY
STATE AND
CHARACTERISTICS

Figure 1—Basic structure of NLS

the Display Terminal Interface may vary with the terminal
type.

Iigure 2 illustrates the window organization of a typical
NLS display screen. Figure 3 shows an actual sereen orga-
nized in this way. Figures 4 through 8 show other organiza-
tions on various physical display terminals.

In developing the graphies portion of the system, we
wished to make use of the fairly well-known notions of
“structured” display images and “virtual” display terminals
in order

(1) To support a wider range of terminals without major
changes to the application program.

VIEW CONTROL |
PARAMETERS
WINDOW 1

COMMAND FEEDBACK AND PROMPTING WINDOW

FILE WINDOW 1

FILE WINDOW 2

Figure 2—A typical NLS display screen subdivided into windows—See
Figure 3

Vet where Lt vaues

Figure 3—Photograph of NLS display which corresponds to Figure 2.

Typewriter simulation window and type in feedback window are empty.

The display terminal is a Delta Data 5200 with a Line Processor.!?

Note highlighted text in upper file window, operands selected by the

user for the Transpose Word command. Text may be moved from one
file to another by selecting operands in separate file windows

(2) To minimize the amount of information to which a
particular formatter must have aceess in order to
modify a certain portion (window) of the display.

By “structured” display images, we mean display images
subdivided into a structure (usually hicrarchical or sequen-

Figure 4—Photograph of IMLAC PDS-1 NLS display terminal with one
file window

Display Techniques for Interactive Text Manipulation 249

Figure 5—Photograph of IMLAC PDS-1 NLS display terminal with
two columnar file windows with two different files being displayed

tial), such that the parts of the structure can be modified
(such as deleted, moved, or replaced) independently from
the rest of the display image. By “virtual” display terminal
we mean a display terminal manipulated by an application
program so that conceptual display properties can be mapped
by interface routines into appropriate commands for the
physical display being supported.

However, in attempting to apply these techniques to text
display and manipulation, we discovered that there are

an s

30-AUR-E 14118

[1.4 Jusp to Sucosssor
- L]

soms festures of NLS-DDT which edd to the norms! DDT
functions,) .

Braekpoints mey be set by typing (n & locetion or by
bugglng 1t on the screen tn split screen mode.

NDDT knowledge of constructions (n the L10 lengusge
end the progrem environment of NLS permite
exeninetion of the contente of verisbles, fields
within records, stringe end the frames within the

oai! return stack more eselly then in the TEwEX-pDr. -

A ueer msy oolTl le proocsdures end replece existing

procsdures by them In the running system. - Thia to .
useful for chsoking out bug fixes end for

oustomizing the system to the user’s nesds.

Figure 6—Photograph of local display terminal screen with one file
window showing documentation for debugging program

J0-AU=11 14430

FILN 1YY
(Y. 4 jneert Stetement
rhis L& @ test.

tele) 3Core NLS lnsert Stetement commends
$ROCEDURE (stid, estrng, levstgl:

meneti); .
stid » <STRMNP, \nstet>istid, estrng, levetg):

mefeti);)
RETURN(gt1d);
END - ’

0 Locels
» 11
sshow Pr\\Rerme
Ry, . 5040
uir .
" @STACK¥12

Figure 7—Photograph of display screen with one file window and one
typewriter window (lower portion of screen). User may interact with
NLS on upper portion of screen or with debugger on lower portion

some underlying differences between pictorial graphics, on
which these techniques work quite well, and textual graphies.
These differences foreed us to develop a slightly different
conceptual model for text displays. This paper reports what
we now know about the differences and the conceptual
model we have developed.

SOME FUNDAMENTAL DIFFERENCES BETWEEN
TEXTUAL AND PICTORIAL GRAPHICS

Although pictorial and textual graphies are similar in
most respects, there are some problems unique to textual
graphics

(1) On most displays, only characters of certain sizes
and spacing are acceptable to the human user (or
can be displayed at all).

Je-AUEeY) thiE

Aopleos wumber
*

(STAPF)

JAZE 1,800 30,604

C54 15999
N

R4 7.86% m

TS R LMe L Al
TR ST R LRt U L]

NITREN: BRIN |]

NIBERIN
NTR RIIBRIN L)

ey nan
[J

4 .45 N
R INRIN L]

R 6100 R

T 4.7 188,040

Figure 8—Photograph of local display screen showing use of numerical
calculation features with a transaction history window on left and user’s
file on right

250

National Computer Conference, 1974

2

3)

€))

Often, characters can only be displayed at certain
coordinate positions with a predetermined spacing
between characters. Thus, mapping a virtual coordi-
nate system onto a physical sereen may be difficult.
Most displays with fixed-spaced character fonts can
be thought of in terms of a character-grid coordinate
system, which is not necessarily the same as its
pictorial coordinate system.

In general, text cannot be scaled, rotated, or trans-
lated by arbitrary amounts (as ean most pictorial
images).

In order to control text formatting, the application
program must know the character-grid coordinate
system(s) of the physical display.

In order to do its job effectively (from the user’s stand-

point),

the application program must be able to determine

the usable character sizes and fonts and their associated
character-grid coordinate systems for the physical display
it is supporting.

These fundamental differences forced us to develop the
conceptual model discussed in the following scetion.

A CONCEPTUAL MODEL IFOR TEXT DISPLAYS

Our requirements for a coneeptual model of a text display

are as

1

follows:

Characteristics of the physical display should be
isolated or parametric. A range of physical displays
must be supported with minimal impact to the
application program. We have found the “isolation
of knowledge” to be an essential software engineering
principle to effect long term reliability, flexibility,
and maintainability of a large software system.
Separate parts of the application program must be
able to manipulate independently the text on portions
of the screen.

The user must be able to “select” text on the screen
by means of some type of “pointing’’ device. By a
pointing device, we mean a device that is capable of
transmitting coordinate data to the application pro-
gram (e.g., mouse,’” stylus and tablet, joy stick) in
response to some user action, such as depressing a
button or a key. The pointing device should be
coupled to the display in such a way that it gives the
user some indication (e.g., the visual indication pro-
vided by tracking the device with a cross-hair) of
what he is likely to select if he makes a selection.
When the user wishes to sclect some text on the
screen, he moves the pointing device so that it (or
its displayed tracking spot) is near the desired text
and takes the appropriate action to cause the coordi-
nates to be transmitted. The application program
should then determine which text is nearcst the
coordinates that were input and show the user what

4)

®)

(6)

@

it found (c.g., by highlighting the sclected text as in
Figure 4). This must be done in such a way that the
user can ‘“‘back up” (say, by depressing some other
button) and retry the selection.
The ability of two or more users to “share screens’”
must be provided. We find great value in the ability
of two or more people who are geographically distant
to run NLS using display terminals through the
ARPA Network and share screens. By this we mean
both see the same image on their screens and both
can control the application program that manipulates
the image. The situation is analogous to several
people standing together at a blackboard, where all
can sce what each writes. This sharing is greatly
facilitated, of course, by a telephone connection. By
this means, distributed people can work together
on such things as reports, designs, papers, proposals,
and computer programs. Video projectors also allow
distributed meetings.
If the application program nceds to use the same
portions of the screen for different purposes, it is
very convenient for the application program to be
able to suppress the display of part of the image and
later to be able to restore it to sight. This is useful
since most display screens are quite small, in terms
of the number of readable characters they will sup-
port, and portions must often be used for several
purposes. For example, the same portion of the
screen might be used for the display of information
from the user’s files and for the display of status
messages or the feedback of user input. The sup-
pression capability allows the application program
to overlap windows and use the physical sereen
space to best advantage without having to dedicate
portions of the screen to infrequently used purposes.
Figure 7 shows a situation where the display of a
file text window has been suppressed in order for the
user to interact with a debugging program in that
portion of the sereen. Figure 7 also shows feedback of
user input (the text “this is a test”) in a sequential
window that extends to the bottom of the screen. As
the user types more text, lines will be suppressed in the
file text windows as need to avoid superpositioning.
The application program must be able to draw the
user’s attention to some text on the screen (c.g.,
make it blink or increase its intensity—sec Figure 3).
Because of the typewriter-like interaction modes of
most modern time-sharing systems, typewriter simu-
lation should be possible on a portion of the screcn
when running the application program in display
interaction mode (for system broadcast, error, or
warning messages from the time-sharing system).
We have found this to be very valuable to the user. This
portion of the screen must, in general, be dedicated
to this purpose because of the asynchronous nature
of these messages. In Figure 7, the debugging pro-
gram is interacting with the user through typewriter-

Display Techniques for Interactive Text Manipulation 251

simulation on the bottom portion of the screen. The
text on the upper -portion of the screen is unaffected
by the scrolling (simulating the behavior of Carriage
Return and Line Feed) which takes place during
typewriter simulation on the lower portion.

In order to meet these requirements, we have developed
a conceptual model of a display terminal. The reader is
referred to Figure 1, to the appendix of this paper, and to
other referenced material (especially References 2 and 19)
for additional details. The primary characteristics of the
conceptual model are as follows.

Windows and Strings

The display screen is divisible into rectangular, possibly
overlapping “windows”. Windows may be invisible or
visible, random or sequential. Sequential windows behave
like typewriter simulations (text is scrolled though them).
Random windows contain character strings which can be
manipulated (moved, replaced, deleted) independently.
Individual strings may or may not be selectable. Text in
selectable character strings may be selected by the user via
his pointing device as operands to application program
commands. The terminal initially has only one sequential
window that covers the whole screen and is called the
“default typewriter” window.

The application program is expected to allocate windows
for various typcs of information display to the user. Some
of these windows are for the purpose of command specifica-
tion feedback to the user and others are for the display of
information contained in the user’s files.

Basic terminal modes

The terminal can be in one of two basic modes: (1) “type-
writer” mode and (2) “display” mode. In “typewriter”
mode, all display windows except the default typewriter
window arc invisible, the default typewriter window is
visible, and coordinate input is disabled; the terminal acts
like an alpha-numeric display simulating a typewriter
terminal. In display mode, the default typewriter window
is invisible and coordinate input is enabled; the application
program controls which windows are visible.

Pointing device interaction

It is assumed that in addition to character input, the
terminal also transmits coordinate information along with
at least certain characters. In formatting character strings
that are sclectable by the user (usually representing text
from the user’s files), the formatters construct a data struc-
ture associating each character string with the data clement
that it represents. When the user subsequently sclects a
character on the screen, the coordinates that were input are
mapped by the display terminal interface, using mapping

data that it maintains, into a window-identifier, string-
identifier, and character count. This character and/or
neighboring characters may then be “highlighted” on the
screen for the user’s benefit. The window-identifier, string-
identificr and character count are converted by the applica-
tion program, using the data structure just discussed, into
data element identifiers appropriate for its use.

Sequential windows

We assume a situation where the user has only one termi-
nal that must behave like a typewriter terminal at times and
like a true two-dimensional display terminal at other times.
Thus, sequential typewriter windows are very important.
Any text that is received by the display that is not in the
context of a display command is “scrolled” through the
current typewriter window. The cffect of characters like
Carriage-Return and Line-Feed are simulated. We expect
that, when an application program is initialized, it allocates
a small scquential window somewhere on the screen and
makes it the typewriter window. Thus, any error messages,
system broadcast messages, terminal “linking”,* and so
forth, can be scen by the user while using the terminal in
display mode.

Device spectfic paramelers

When the Display Terminal Interface (see Iigure 1) is
initialized by the application program, it determines (via
monitor calls or interaction with an “intelligent” terminal)
enough about the display characteristics to manipulate the
physical display. It returns to the application program the
character-grid coordinate systems for the available charac-
ter sizes of the terminal. The rest of the application program
is then parameterized, on the basis of these values.

To make all of this work, we must make certain assump-
tions about the display (and any associated processing
capability it might logically possess).

It is mandatory that:

(1) we can treat the screen like a large character grid
and write characters at arbitrary positions on the
grid (providing that we do not write past the edge
of the screen),

(2) there is some way of mapping our conceptual display
primitives, deseribed in the Appendix of this paper,
into the primitive operations of the physical display,

(3) there is some way of writing text in a mode such
that it stands out from the rest (e.g. blink, reverse
video, underline),

(4) there is some way of highlighting existing text on
the sereen in such a way that when the highlighting
is removed, the original text will look just as it did
before it was highlighted (This may be the same as
(3) above), and

(5) there is a coordinate input device such that the cur-

252 National Computer Conference, 1974

rent coordinates will be input with at least certain
characters and such that it can be tracked on the
screen.

It is desirable but not mandatory that:

(1) there is some way of accomplishing the typewriter
window capability (although this is not a must, the
capability is certainly useful to the user),

(2) various (fixed spaced) fonts and character sizes are
available for the terminal (we plan to extend the
model to include proportionally spaced fonts in the
future), and

(3) the (intelligent) display terminal is capable of re-
sponding to an interrogation command from the
Display Terminal Interface. This capability is op-
tional, since the user can supply the information
instead. However, this latter approach is not very
desirable or reliable.

Our operating system makes assumptions about the type
of terminal that one is using. If these assumptions are
incorrect (for example, if one has a display rather than a
typewriter terminal), then the user must communicate this
to the operating system via a command. If the terminal is
intelligent and can respond to an interrogation, the user
simply specifies this, and when the Display Terminal Inter-
face 1s initialized, it sends the terminal an interrogation
command, to which the terminal responds with its charac-
teristics. Otherwise, the user must supply any needed in-
formation about the display terminal or its characteristies
must be assumed by the application program.

THE MOUSE AND KEYSET AS IMPORTANT AIDS
TO DISPLAY INTERACTION IN TEXT EDITING

Although they are very simple devices, we have found
that the mouse and keyset, combined with a standard
typewriter-like keyboard, form a very balanced and uscful
set of input devices for two-dimensional text manipula-
tion.* %16.1%.18 The mouse is used for pointing and for special
function input; the keyset and keyboard are used for char-
acter input. The mouse is a small device that has two per-
pendicularly mounted potentiometers, to which are attached
wheels that roll and slide in proportion to the direction of
movement, and three buttons. It is an easy “pointing”
device to use and causes the user little or no fatigue. It can
be used on almost any flat surface, usually a desk top.

The keyset, consists of five long keys, similar in shape to
white piano keys. The user depresses several keys in unison
to input a character. When the thirty-one possible combi-
nations are combined with shift buttons on the mouse, the
user is able to completely duplicate the standard keyboard,
while keeping one hand on the mouse, ready to point to
operands for commands typed in from the keyset. When
more than a few characters are to be input, the user removes
his hands from the mouse and keyset and uses the type-
writer-like keyboard.

The three buttons on the mouse, if depressed and released
without intervening characters from the keyset, have addi-
tional functions, the more interesting of the seven being:

To select some text on the screen or give final confirma-
tion to begin the execution of a command,

To back-up command specification, to allow the user to
redo whatever he just did (e.g. select something else on the
screen or retype his last character),

To abort the current command specification and return
the user to the beginning of command specification, and

To allow the user to modify the parameters which control
how his information is presented to him. He may do this in
the middle of specifying a command.?

For a more extensive discussion of these devices, the
reader’s attention is directed to References 2 and 4.

ACKNOWLEDGAMENTS

The author wishes to express his gratitude to other members
of the ARC staff for their help in the development. and
implementation of the conceptual model discussed in this
paper. In particular, he would like to thank Ken Victor for
his help, ecriticism, much implementation work, and for
maintaining the official documentation for the INILAC
protocol.’ In addition, the author would like to thank
Don (Smokey) Wallace for implementation help, Don
Andrews for his work on the Line-Processor,? and L. Peter
Deutsch, of XEROX Palo Alto Research Center, for helping
to develop the protocol for supporting INLAC PDS-1
display terminals and for writing an IMLAC program to
implement it.

The work reported here was and is currently being sup-
ported primarily by The Advanced Research Projeets
Agency (ARPA) of the Department of Defense, and also
by the Rome Air Development Center of the Air IForee and
the Office of Naval Rescarch.

REFERENCES

1. Hardy, M. E., “Micro Processor Technology in the Design of Ter-
minal Systems,” under Preparation for the Proceedings of the IEEE
COMPCON, 1974, SRI-ARC Catalog Item 20185,

2. Andrews, D. 1., “Line Processor: A Device for Amplification of
Display Terminal Capabilities for Text Manipulation,” prepared
for the Proceedings of the National Compuler Conference, May 1974,
SRI-ARC Catalog Item 20184.

3. Engelbart, D. C., R. W, Watson and J. C. Norton, “The Augmented
Knowledge Workshop,” AFIPS Proceedings National Computer
Conference, June 1973, 38 p., SRI-ARC Catalog Item 14724,

4. Engelbart, D. C., “Design Considerations for Knowledge Workshop
Terminals,” AFIPS Proceedings National Computer Conference,
June 1973, 38 p., SRI-ARC Catalog Item 14851,

5. Engelbart, D. C., SRI-ARC Summary Jor IPT Contractor Meeting,
San Diego, 8-10 January 1973, Stanford Research Institute, Aug-
mentation Research Center, Menlo Park, California, 7 January
1973. 8 p., SRI-ARC Catalog Item 13537.

6. Engelbart, D. C., Coordinated Information Services Jor a Discipline-
or Mission-Oriented Community, Stanford Research Institute, Aug-

Display Techniques for Interactive Text Manipulation 253

mentation RResearch Center, Menlo Park, California, paper given
at Second Annual Computer Communications Conference, San
Jose, California, 24 January 1973, 12 December 1972, preprint,
13 p., SRI-ARC Catalog Item 12445.

7. Augmentation Research Center Staff, Online Team Environment:
Network Information Center and Compuler Augmented Team Inler-
action, Stanford Research Institute, Augmentation Research Cen-
ter, Menlo Park, California, RADC-TR-72-232, 8 June 1972, 266 p.,
SRI-ARC Catalog Item 13041.

8. Savoie, Robert, Summary of Results of Five-Finger Keyset Training
Experiment, Project 8457-21, Stanford Research Institute, Bio-
engineering Group, Menlo Park, California, 29 March 1972, 4 p,,
SRI-ARC Catalog Item 11101.

9. Bobrow, 1. G., J. D. Burchfiel, D. L. Murphy and R. S. Tomlinson,
“TENEX, A Paged Time Sharing System for the PDP-10,”
presented at ACM Symposium on Operaling Sysltems Principles,
18-20 October 1971, Bolt Beranek and Newman Inc., 15 August
1971, SRI-ARC Catalog Item 7736.

10. Engelbart, D. C., Network Information Cenler and Compuler-Aug-
mented Team Interaction, Interim Technical Report, Stanford Re-
search Institute, Augmentation Research Center, Menlo Park,
California, RADC-TR-71-175, AD 737 131, July 1971, 104 p,
SRI-ARC Catalog Item 8277.

11. Roberts, L. G. and B. 1). Wessler, The ARPA Network, Advanced
Research Projects Agency, Information Processing Techniques,
Washington, D. C., May 1971, SRI-ARC Catalog Item 7750.

12. Engelbart, D). C., Erperimental Development of a Small Computer-
Aungmented Information System, Annual Report, 15 April 1970,
15 April 1971, Stanford Research Institute, Augmentation Re-
search Center, Menlo Park, California, 15 April 1971, 8 p., SRI-
ARC Catalog Ttem S616.

13. Engeibart, D. C. and Staff of ARC, Advanced Inlellect-A ugmentation
Techniques, Final Report, Stanford Research Institute, Augmenta-
tion Research Center, Menlo Park, California, CR-1827, July 1970,
212 p., SRI-ARC Catalog Item 5140.

14. Engelbart,). C., “Intellectual Implications of Multi-Access Com-
puter Networks,” paper presented at Interdisciplinary Conference
on Multi-Access Computer Nelworks, Austin, Texas, April 1970,
Preprint, 12 p., SRI-ARC Catalog Item 5255.

15. Engelbart, D. C. and W. K. English, “A Research Center for Aug-
menting Human Intellect,”” AFIPS Conference Proceedings, Vol. 33,
1968, 15 p., SRI-ARC Catalog Item 3954.

16. Engelbart, D. C., W. K. English and J. F. Rulifson, Development of a
Multidisplay, Time-Shared Compulter Fucility and Compuler-Aug-
mented Management-System Research, Stanford Research Institute,
Augmentation Research Center, Menlo Park, California, AD 843
577, April 1968, 180 p., SRI-ARC Catalog Item 9697.

17. English, W. K., D. C. Engelbart and M. A. Berman, “Display-
Selection Techniques for Text Manipulation,” in IEEE Transac-
tions on Human Factors in Electronics, Vol. HFE-8, No. 1, March
1967, p. 5-15, SRI-ARC Catalog Item 9694.

18. Inglish, W. K., D. C. Engelbart and Bonnie Huddart, Computer
Aided Display Control, Final Report, Stanford Research Institute,
Augmentation Research Center, Menlo Park, California, CR-
66111, N66-30204, July 1965, 104 p., SRI-ARC Catalog Item 9692.

19. Stafl of ARC, IMLAC User's Guide, Stanford Research Institute,
Augmentation Research Center, unpublished, available upon re-
quest.

APPENDIX—PRIMITIVES OF THE CONCEPTUAL
MODEL OF A TEXT DISPLAY

The primitive operations that the Display Terminal
Interface provides to the application program are listed
here.

For window Manipulation:
WINDOW-1D — ALLOCATE-WINDOW (X1, Y1, X2, Y2,
CHARACTER-SIZE, FONT, TYPE)
Function: Allocates a rectangular window of the specified
type (random or sequential) and position. Establishes
default character stze and font for the window.

Arguments:
X1, Yl1: sereen coordinates of upper left corner of
window.
X2, Y2: screen coordinates of lower right corner of
window.
CHARACTER-SIZE: default character size for this
window.

FONT: default font for this window.

TYPE: sequential or random

Returns:

WINDOW-ID: unique identifier for this window
(to be used in subsequent commands).

DEALLOCATE-WINDOW (WINDOW-ID)

Function: Deallocates the specified window.

CLEAR-WINDOW (WINDOW-ID)

Funetion: Deletes contents of window and removes image
from the screen.

INVISIBLE-WINDOW (WINDOW-ID)

Function: Makes the contents of the window invisible
(no image on the screen).

VISIBLE-WINDOW (WINDOW-ID)

Function: Makes the contents of the window visible
(image appears on the screen).

TYPEWRITER-WINDOW (WINDOW-ID)

Function: Makes the specified (sequential) window the
typewriter window. All “uncscorted” characters (not
within a display command) will be scrolled through
this window. These characters can also be scrolled
through the default typewriter window so that the
user can sce them when the terminal is returned to
typewriter mode.

For Character String Manipulation:

STRING-ID « WRITE-STRING (WINDOW-ID, X, Y,
CHARACTER-SIZE, FONT, HIGHLIGHT, SE-
LECTABLE, CHARACTERS)

Function: write the specified string in the window, with
the specified propertics at the specified position.

Arguments:

WINDOW-ID: unique identifier for a window.

X, Y: window coordinates of the first character of
the string.

CHARACTER-SIZE: Use specified character size for
this string or use window default.

FONT: Use specified font for this string or use window
default.

HIGHLIGHT: If specified, highlight this string (make
it stand out to user).

SELECTABLE: If specified, characters in this string
may be selected by the user via the SELECT-CHAR-
ACTER primitive.

CHARACTERS: the characters to be displayed.

254 National Computer Conference, 1974

Returns:

STRING-ID: unique identifier for the string within
this window.

REPLACE-STRING (WINDOW-ID, STRING-ID, X, Y,
CHARACTER-SIZE, FONT HIGHLIGHT, SE-
LECTABLE, CHARACTERS)

Function: Replaces the specified string in the specified
window by the characters speeified. If the X, Y coordi-
nates are not specified, the current position is used.
FONT and CHARACTER-SIZE may be defaulted to
the old values for the string or to the window defaults.
If HIGHLIGHT is specified, the string is made to
stand out from normal text on the screen.

MOVE-STRING (WINDOW-ID, STRING-ID, X, Y,
CHARACTER-SIZE, FONT, HIGHLIGHT, SE-
LECTABLE)

Function: Move the specified string to the specified posi-
tion within the window.

DELETE-STRING (WINDOW-ID, STRING-ID)
Function: Delete the specified string from the speeified

window.

INVISIBLE-STRING (WINDOW-ID, STRING-ID)
Function: Make the specified string invisible to the user

(no image on the screen).

VISIBLE-STRING (WINDOW-ID, STRING-ID)

Function: Make the specified string visible to the user
(image on the screen).

CLEAR-STRING (WINDOW-ID, STRIND-ID)
Function: Same as REPLACE-STRING with null string.
For Sequential Window Manipulation:

APPEND-TEXT (WINDOW-ID, CHARACTERS)
Function: Append the specified characters to the specified

sequential window. Carriage Return and Line Feed
characters are simulated within primitive and are
automatically inscrted to avoid characters exceeding
the right edge of the window.

For Highlighting Characters:

MARK-CHARACTERS (WINDOW-ID, X1, X2, Y)
Function: Highlight the characters from position X1, Y

to X2,Y in the specified window, such that the mark
can be removed with REMOVE-MARK and the
original characters will be unchanged. It is desirable,
but not mandatory, for the user to be able to read
characters that are marked by this primitive.

REMOVE-MARK ()

Function: Remove the last mark put on the screen with
MARK-CHARACTERS.

CLEAR-MARKS ()

Function: Remove all marks put on the sercen with
MARK-CHARACTERS.

For Cursor Manipulation:

SET-CURSOR (CHARACTERS)

Function: If possible for this display terminal, set the
primary cursor (the one that tracks the user’s pointing
device) to the specified characters.

PLOT-SECONDARY-CURSOR (X,Y, CHARACTERS)
Function: Plot a secondary cursor at screen position XY

using the characters specified if possible. This must

be done in such a way that the original text on the

screen is not destroyed. This primitive is used in sereen
sharing.

For User Input:

CHARACTER « READ-CHARACTER ()

Function: Read the next character input from the termi-
nal.

(X,Y) <~ READ-CURSOR-COORDINATES O

Function: Read the next (screen) coordinates tuput from
the terminal.

SEND-COORDS-WITH-CHARACTERS ()

Function: Begin sending cursor (sereen) coordinates with

(at least certain control) characters.
DONT-SEND-COORDS-WITH-CHARACTERS 0

Function: Stop sending cursor coordinates with any
characters.

TIME-INTERVAL-COORD-INPUT (TIME-

INTERVAL)

FFunetion: Begin reporting cursor coordinates periodically
(when they have changed), independent of user actions,
for use in sereen sharing.

For User Selection of Text on the Screen

(WINDOW-ID, STRING-ID, CHARACTER-COUNT,

X', Y') « SELECT-CHARACTER X)Y)

Function: Given the screen coordinates X,Y, find the
nearest, selectable character on the sereen.

Returns:

WINDOW-ID: The unique identifier for the window
containing the string that contained the selected
character.

STRING-ID: The unique identifier for the string
containing the sclected character.

CHARACTER-COUNT: The index into the string
identified by STRING-ID of the character that was
sclected.

X', Y’: The window coordinates of the selected char-
acter.

WINDOW-ID « SELECT-WINDOW (X,Y)

Function: Given the coordinates X,Y, return an identifier
for the nearest window containing sclectable character
strings. Such windows should not overlap.

For Batch Processing Display Commands:

PROCESS-COMMANDS (DISPLAY-COMMANDS-

LIST, WINDOW-ID)

Function: Given a list of display commands (like those
described above), perform the operations all at once
on the display in a manner appropriate to the actual
display.

For Error Messages:

OUTPUT-ERROR-STRING (CHARACTERS)

I'unction: Qutput the error message in a manner appro-
priate to the display. .

For Determining Display Characteristics:

PARAMETERS « INTERROGATE-DISPLAY 0

Function: Determine the usable character sizes, fonts,

and character-grid coordinate systems for the display.

Display Techniques for Interactive Text Manipulation 255

The “normal” character size and font are also indi-
cated. Exccution of this primitive also initializes the
Display Terminal Interface routines to work with the
actual display.
For Basic Mode Switching:
TYPEWRITER-MODE ()

Function: Put the terminal in typewriter mode. Make all
windows invisible except for the dcfault typewriter
window and disable coordinate input.

DISPLAY-MODE ()

Function: Restore terminal to display mode. Make

default typewriter window invisible, make any windows
that were visible prior to the last TYPEWRITER-
MODE command visible again, and cnable coordinate
input.

For Resetting the Terminal to Its Initial State:

RESET ()

Function: Reset the display terminal to its initial state,
simulating a typewriter-like terminal with no windows
allocated and not sending coordinates with any char-
acters.

