
AUGMENT29079
1977

THE DESIG MJD IQIErOP Pd
MULTIPROCESS ACUINE LNGUAG INTERACTIVE DEBUGGER

Kenneth Victor

kugmentation Research Center
Stanford Research Institute
Menlo Park California



AUGMENT29079
1077

The Design and Implementation of DAD
Multiprocess Multimachine Multilanguage Interactive Debugger

Kenneth Victor

Augmentation Research Center

Stanford Research Institute

Menlo Park California



THE DESIGN AND IMPLEMENTATION OF DAD
MULTIPROCESS MULTIMACHINE MULTILANGUAGE INTERACTIVE DEBUGGER

ABSTRACT

Debugging tools and techniques have varied from toggling
switches and reading lights at CPU console to very
sophisticated high level language interactive debuggers
Because of its unique internal organization the interactive

debugger described here can provide high level language
debugging for several languages and allows the programmer to

debug one or more processes which may be executing on different
machines from each other andor from the debugger



THE DESIGN AND IMPLEMENTATION OF DAD
MULTIPROCESS MULTIMACHINE MULTILANGUAGE INTERACTIVE DEBUGGER

INTRODUCTION

As the sophistication of computer programs and the environments
in which they execute has grown over the years so has the

sophistication of the approaches used to debug these programs
This paper describes newly implemented interactive debugger
developed at SRI We discuss the requirements and philosophy
that guided our design We present brief analysis of the

interactive debugging process and the internal design and

implementation of our debugger

DADS GOALS

The DoAll Debugger DAD grew out of need for debugging
tool to operate in the National Software Works NSW
environment The NSW is distributed multiprocessing
system where users operate primarily online and interactively
Interactive tools are used to edit and specify batch processing
and to examine the results of batch processors The NSW and its

tools are written in variety of languages that execute on

variety of machines DAD would assist in the development and

maintenance of portions of the NSW and some NSW tools

We wanted to provide interface to the user
regardless of the process being debugged With such an
interface the commands and where feasible the techniques for

debugging would be the same for all machines and languages
Evans and Darley claim that if the appearance to the user
of the debugging system could be made the same over number
of timesharing systems considerable savings could well
be

The following goals were determined by the target NSW
environment and from our previous experiences developing
software engineering tools and interactive systems

It would be an interactive debugger since it would be

used initially in an interactive environment and

interactive debuggers are generally accepted as the most
powerful



29077

It would be capable of debugging one or more processes
where these processes might or might not be executing on
the same machine as each other or on the same machine as

the debugger This is necessary to assist in the

development and maintenance of distributed
multiprocessing system

It would be high level language debugger capable of

supporting many languages This is because the tools
whose development and maintenance it would support would
be written in variety of languages and because high
level language debugging is more powerful and more
natural However the debugger would operate on

compiled code rather than interpret source statements in

order to avoid problems such as those associated with
poor simulation

basic set of core commands and capabilities would be

defined that would be useful for broad set of

implementation languages and operating system
environments

The implementation of the debugger should allow growth in

both additional core commands and capabilities and the

support of new languages and machines This design goal
dictates that the internal structure of the debugger be

modular and that modules be dynamically loadable

The design should allow the debugger to run in both an

NSW environment and in standalone TENEX
environment

There were debuggers that satisfied various subsets of these
requirements but no single debugger could satisfy all of the

requirements

THE INTERkCTIVE DEBUGGING PROCESS AND DADS ORGANIZATION

The tasks in interactive debugging fall roughly into the

following categories

The user the programmer who is doing the debugging
specifies an action



29077

The users functional specifications are translated into

calls on specific debugger routines

The debugger routines read andor write the bits in the
address space of the program being debugged and read andor
modify the state of the program being debugged

The bits from the program and the programs state
information are interpreted in manner that is meaningful
to the user and consistent with the language the program is

written in

The resulting interpretations are presented to the user

Upon examining these tasks we saw that the internal functions
of debugger can be divided roughly into those that
communicate with the user are independent of the language in

which the program being debugged was written and independent of
the operating system under which the program is executing are

language dependent and are operating system dependent These
functional areas suggested an internal modular structure for the

debugger

consists of number of modules each supporting one of the

above functional areas Modules may or may not execute on the

same machine as each other and intermodule communication
occurs via well defined communication protocols The debugger
configuration can change dynamically loading and unloading
modules as needed The modules are

frontend module FE for all communication with the user
This module consists of among other parts Command

Language Interpreter CLI data base called grammar
that represents the commands of the debugger and routines
for communicating user commands to the rest of the debugger
and for receiving information from the rest of the debugger
for display to the user

debugger dispatcher DD module that receives functional
command specifications from the frontend and calls various
routines to implement these requests and transmit results
meaningful to the user back to the frontend

language module LM for interpreting the bits and state
information of the program being debugged in manner
appropriate to the language in which the program was written

An operating system module OSM with responsibility for



29077

reading and writing the address space and state information
of the program being debugged

This modular approach along with well defined and published
functional specifications for each module and for intermodule
communication produces some benefits As long as each module
conforms to its functional specifications and communication
standards it can be implemented in any manner and in any
language desired It is also possible to dynamically load and

unload individual modules

This collection of modules namely the frontend the debugger
dispatcher the collection of language modules and the
collection of operating system modules comprise DAD This
modular approach enables DAD to be extensible and to be all

things to all people

While each of DADs modules could exist as separate process
and communicate via an interprocess communication protocol in

the current implementation the frontend exists as unique
process the debugger dispatcher the language module and the

operating system module coexist in second process known as the

backend The backend may be on different machine from the

frontend Thus in debugging situation we have three or
more processes executing on one or more machines
frontend process for all communication with the user
backend process for performing the commands specified by the

user in hisher communication with the frontend and one or

more target processes ie the processes containing the

programs to be debugged

The user need not be concerned with loading and unloading
language and operating system modules These functions are

performed automatically by DAD The user merely indicates which

process he is concerned with and DAD does the rest based on
models of the process structure built and maintained by DAD
Additionally when an event associated with specific process
occurs such as executing an illegal instruction or

encountering user defined breakpoint DAD ensures that the

proper modules for the process in which the event occurred are
loaded

DADS MODULES

In discussing the individual modules comprising DAD we will



29077

start with the frontend the module closest to the user and
work our way down through the logical structure until we reach
the bits of the program being debugged

41 THE DEBUGGER FRONTEND

The debugger frontend FE is responsible for all
interactions with the user and contains among other parts
Command Language Interpreter CLI which interprets the

debugger grammar The grammar is data structure produced
as output of the Command Meta Language CML compiler
The user command language and all user interactions are
thus specified as CML program This program is compiled by
the CML compiler producing grammar that is then

interpreted by the CLI

The command language has not been tailored to the syntax or
semantics of any one language Rather the command language
is general and deals with concepts that are common to
number of languages The command language is basically of
the form

Command Argument Qualifiers Confirmation

The user specifies the action to be performed the base on
which the action is to be performed optionally some

qualifiers for an instance of the command and when he or she
is done specifying the command confirmation After the
command confirmation the command is executed by the

backend

42 THE DEBUGGER DISPATCHER

The debugger dispatcher DD is that module of DADs backend
responsible for communication with the debugger frontend and
for dispatching user requests made via the debugger
frontend to the appropriate routines in language andor
operating system modules

Included in the data structures maintained by the DD are
models of the target process structures and of



29077

the appropriate language and operating system modules for

each target process The DD also contains the code that

supports the communication protocols for frontendbackend
communication and the runtime environment for the high level

language used by DAD itself

In response to user actions the FE calls proce9ures in the

debugger backend namely in the debugger dispatc There
is not onetoone mapping between DD routines and commands
since different commands may call the same DD routine
passing it different arguments or one command may use more
than one DD routine The DO routines called then perform the

requested action perhaps by calling other DD routines or

routines in LM or OSM and return to the FE

The DO will look in the dispatch table associated with the

current LM or OSM to determine if the request is supported
If the request is not supported an appropriate error message
will be generated and returned to the FE to be presented to

the user The Do also performs some syntactic and semantic
checks on the arguments for request If the arguments are
invalid or illegal the DO will either generate an

appropriate error message and return to the FE or the DO
will interact with the user via the FE to get 7alid

arguments

Finally the debugger dispatcher will invoke the appropriate
DO LM or OSM routines to satisfy the request The
invoked routine will perform its function and return to the

DO The DO then returns to the FE passing along any
strings including error messages generated by the invoked
routines to be presented to the user

43 LANGUAGE MODULES

language module is responsible for any language specific
function such as interpreting symbolic input according to
the semantic and syntactic rules of the current high level

language or displaying cell in the current high level

language Each language module in the debugger can support
one and only one language running in specific environment
For example there would be separate BCPL language modules
to support BCPL on TENEX and to support BCPL on an ELF

Although programming language may be functionally



29077

independent of the target execution machine the

implementation of that language is almost always highly
machine dependent Thus to interpret the bits of

program requires that the LM have knowledge of the

implementation of the language

We have separated the functions of the OSM from the

machine dependent part of an LM because for any specific
machine there are usually number of languages which can

compile programs for that machine Each of these

languages requires its own LM but all the 5h use the

same functions to access the target program and hence

require only one OSM Thus within DAD there is one OSM
for each machine but for each machine there may be many

44 OPERATING SYSTEM MODULES

Any interactive debugger must provide facilities to examine
and manipulate the address space and state informaton of the

process it is debugging The function of the operating
system module is to isolate all such code into single
module with well defined interface

Isolating these functional routines into single module
makes it possible to dynamically load the module or to

replace one module with another Processes that execute
either on the same machine as the debugger or on remote
machine may be debugged by loading the proper OSM and 5h as

appropriate

To illustrate debugger routine for examining cell in

the address space of target process will always call

routine in the OSM to return the contents of the cell
rather than reading the cell directly The debugger
routine need not know how the OSM got the contents of the

cell or for that matter whether or not the target
process is process on the same machine as the debugger



29077

45 TARGET PROCESS MANIPULATION

An OSM may perform its functions in any manner it chooses as

long as it obeys the specified interface conditions To

interactively debug any process the OSM must be able to
exercise certain controls over that process such as reading
and writing the process address space and stopping
resuming its execution

When running under process oriented operating system
with the debugger at the top of the process tree the OSM
could exercise these functions by operating system
primitives that exert control over inferior processes If

the debugger and the target process are both under the
control of common process the debugger may perform some
of these functions via operating system primitives
directly while for others it may have to request the

common head process to perform the function

If the debugger and the target process are not running on

the same machine ie crossdebugging or under
common process in the same machine the OSM must
communicate with procedures in the target process or in

process that has control over the target process

The OSM functions required for debugging are few and simpleeg read and write the address space andor control state
of the target process Thus the procedures required on the

target machine to implement these functions are also few and

simple By providing small set of procedures on target
machine to communicate with an OSM which is executing on
more powerful machine we are able to provide previously
unavailable power for the debugging of programs executing on

minicomputers or microcomputers

CONCLUSION

DAD with its unique internal organization provides interactive
debugging of multiple processes distributed over number of

machines The modular structure allows high level language
debugging of programs using variety of higher level languages
In addition the modular approach allows extensibility of the



29077

debugger to cover new environments without the user having to
learn new debugging discipline



29077

BIBLIOGRAPHY

Andrews et al User Interface System for Computer
Network Marketplace Augmentation Research Center Stanford
Research Institute Menlo Park Ca December 1976 SRIARC
Journal Number 27266

Balzer et al Design of National Software Works
Information Sciences Institute Marina Del Rey Ca
December 1975 ISIRR73l6

Evans Darley OnLine Debugging Techniques
Survey AFIPS FJCC Conference Proceedings vol 29 AFIPS

Press 1966 pp 3750

Irby The Command Meta Language System Augmentation
Research Center Stanford Research Institute Menlo Park
Ca January 1976 SRIARC Journal Number 27266

Retz Schafer The Structure of the ELF Operating
System AFIPS NCC Conference Proceedings vol 45 AFIPS

Press 1976 pp 10071016

Victor The Design and Implementation of DAD
Multiprocess Multimachine Multilanguage Interactive

Debugger Augmentation Research Center Stanford Research
Institute Menlo Park Ca January 1976 SRIARC Journal
Number 27399
The BCPL Reference Manual Bolt Beranek and Newman Inc
Cambridge Mass September 1974

TENEX Jsys Manual Bolt Beranek and Newman Inc
Cambridge Mass September 1973

10



29077

Mr Victor graduated from Brandeis University with an AB in

Physics in 1968 He has worked for IBM Hewlett Packard and for

the past six years with the Augmentation Research Center ARC at

Stanford Research Institute While at ARC he has been involved
with the design and implementation of NLS the oNLine System and

with the design and implementation of various software engineering
tools and systems

longer more detailed version of this paper is available from
the author The work reported here was supported in part by
contract C0320h with the Air Force Rome Air

Development Center for the National Software Works project of

the Defence Advanced Research Projects Agency

11


