
SRI ARC Journal Number 29292

April 1977

SOFTWARE ENGINEERING ENVIRONMENT

Kenneth Victor
Research Engineer

Augmentation Research Center
Stanford Research Institute

Menlo Park California 94025

Proceedings of AIAANASAIEEEACM
Computers in Aerospace Conference

Los Angeles CA October 31November 1977 pp 399403



SRI ARC Journal Number 29292

April 1977

Software Engineering Environment

Kenneth Victor

Research Engineer

Augmentation Research Center

Stanford Research Institute

Menlo Park California 94025

Proceedings of NASAComputers in Aerospace
Conference Los Angeles CA October 31 November 1977 pp 399403



Software Engineering Environment 29292

Introduction la

This note describes novel approach to improving the

productivity of people who design develop and maintain

computer software The productivity of these people is

important because overruns in cost and delivery time for

software are common quality is low and maintenance cost
is often greater than that of the original development
Barry Boehm at the 1973 Se Symposium on the High
Cost of Software held in Monterey California estimated
the 1972 Air Force software costs to have been between
billion and 15 billion while hardware costs were in the

range of 03 to 04 billion He predicted the ratio of

software to hardware costs will increase until it reaches
level of about to in the l980s because hardware costs
will continue to go down while the costs of personnel
increase lal

We believe that by making more and better tools easily
available to software engineers by making the tools
consistent with each other and by developing better
techniques and methodologies we can reduce the costs
associated with the software life cycle and improve the

quality of the products This note describes method for

achieving these goals by building upon the Augmentation
Research Centers NLS system by defining and implementing

few new tools and by providing consistent access to

already existing tools la2

number of tools and techniques are currently available to
assist in the various phases of the software life cycle
We use the term tool to refer to software system or

program that helps someone develop other systems or

programs much as hammer is tool used to build house
We use the terms techniques and methods interchangably
to refer to the manner in which the tools are applied The
term methodology is used to refer to systematic use of

collection of tools and techniques Finally we use the
term environment to refer not only to the collection of
software tools techniques and methodologies available to

software engineer but also to the people with whom the
software engineer interacts and the hardware tools and

systems available such as computers and terminals la3



Software Engineering Environment 29292

Background lb

The software life cycle as defined by Boehm in the

December 1976 issue of the IEEE Transactions on Computers
consists of the following seven phases lbl

System requirements lbla

Software requirements lblb

Preliminary design lblc

Detailed design lbld

Coding and debugging lble

Test and preoperations

Operation and maintenance lblg

In addition to these distinct phases there are threads
that pervade the entire life cycle the management and

control of people resources and the cycle itself the

production and distribution of documentation and the

training of designers developers maintainers and end

users

The later in the life cycle an error is detected the more
expensive it is to correct Or conversely the more effort
that is expended in the frontend of the cycle Phases 14
the less time and funding are necessary for implementation
and integration Phases and and for operation and

maintenance Phase lb3

number of tools and techniques are already available to
aid in all phases of the software life cycle lb4

Formal languages exist for specifying system and

software requirements and tools are available to

validate these requirements to ensure their

completeness and correctness lb4a

Formal languages exist for specifying the preliminary
and detailed design of program and tools are
available to prove the completeness and correctness of

these designs



Software Engineering Environment 29292

Highlevel languages for implementation are abundant
and number of other tools and techniques such as

the use of program support libraries and the use of

programming teams help the implementation process
and lb4c

wide variety of debuggers are available including
systems for automatic testing of programs automatic

generation of data with which to test programs
symbolic program execution and automatic correctness
proving of programs lb4d

Until there exists one tool that will automatically
generate program given the end users requirements
stated loosely and in natural language no single tool

will be sufficient to guarantee correct errorfree
software to meet all the users changing requirements and

intents Additionally many existing tools have both
practical and theoretical limits as to what each can

accomplish For example many program proving tools are

capable of proving only small to moderate length programs
and only when such programs are written in highly
specialized languages Tools that exercise all statements
or control paths of program in addition to having many
of the above practical limitations are theoretically
incapable of determining the absence of necessary control
path lb5

Thus for the present and the foreseeable future we are
left with the need for number of tools and techniques
This collection is needed for each individual phase of the

life cycle and for the threads that pervade the cycle
itself Current practices for the most part consist of

the haphazard application of the tools known to local

groups of programmers What is needed is the widespread
knowledge about existing tools and welldefined
methodology for applying these for maximum payoff lb6

It is not sufficient merely to provide wide spectrum of

tools The tools should be used tool might not be used
for many reasons it may not solve the problem it was

designed to attack it may create more problems than it

solves it may be too expensive to use it may be too
difficult to use andor learn it may be solving problem
that is not perceived by those who must use it eg the

imposition of tool on programmers by manager
Conversely we may define the ideal tool as one that solves

need perceived by the users of the tool without creating
any new problems and is cheap to use The difficulties



Software Engineering Environment 29292

associated with learning and using it should be

commensurate with the perceived payoffs to the user lb7

If multiplicity of tools is needed then these tools

certainly should complement each other The results
produced by tool that assists in one phase of the cycle
should be directly usable by other tools that assist in the

same phase and by the tools that support the next phase
Ideally the techniques and discipline would be the same
for using all tools Thus knowing how to use one tool
would be almost sufficient for using all tools The

specifics of new tool may be different but the discipline
would be the same This might be analagous to increasing
ones vocabulary relatively easy task rather than

having to learn an entirely new language relatively more
difficult task lb8

large project consisting of number of modules and being
worked on by number of individuals requires tools just to

keep track of who is doing what to which module and where
in the cycle each module currently is Such information
ought to be maintained in data base associated with the

project The individual tools that support specific phases
of the cycle could then interact with this common project
data base to indicate where module currently is in the

life cycle It is easy to imagine other tools that would
then interact with this data base to extract information
such as who is working on what module what percentage of

the system has been designed what percentage of the system
has had its module specifications verified what percentage
of the system has been coded etc lb9

We propose to define implement and study software

engineering environment containing collection of

consistent and complimentary tools technigues
methodologies and supporting data bases lbl



Software Engineering Environment 29292

Basic lc

The tasks required to provide software engineering
environment fall roughly into the following three areas lcl

Defining and implementing the environment lcla

Providing the tools that will be used by the software
engineers and

Providing consistent access to the above tools from
the software engineers environment and ensuring
that any results produced by one tool are useable by
other tools including the project data base
maintenance tool lclc

We intend to build upon the NLS system see below to

provide the framework for software engineering
environment NLS was designed and implemented with its own
evolution as one of its primary goals This fact will make
it possible to expand NLS to provide the framework for

software engineering environment NLS already provides
many of the capabilities that would be needed in such an
environment and thus by using rJ we reduce the number of

new tools that need to be developed

We intend to define project data base and design and

implement the tools for the maintenance and management of

project data bases lc3

Since many good tools already exist to assist in all phases
of the software life cycle we do not intend to redevelop
such tools Rather we intend to adopt existing tools into

our environment by using NLS as frontend for these tools
This approach will ensure consistent access to these tools

means will be defined for using NLS as frontend system
and for capturing the results of tool for incorporation
into the appropriate project data base Ultimately tools
will be modified and designed to fit cleanly in the

environment



Software Engineering Environment 29292

The NLS System ld

For the past 15 years the Augmentation Research Center
ARC at Stanford Research Institute SRI has been
developing large interactive system NLS to help people
work with information NLS is currently in wide use by
secretaries managers editors and variety of

researchers We propose to use NLS as the basic framework
within which to build the software engineers environment

NLS provides wide spectrum of tools and techniques for

the creation viewing editing and dissemination of

textual and pictorial information At the user level NLS
is organized into number of subsystems Each subsystem
contains number of related commands the

semantics vary widely from subsystem to subsystem the

syntactic rules for all commands are the same and the user

interaction discipline is the same for all subsystems

NLS is an extendable system By writing new subsystems
individual users can extend the basic capabilities of NLS
to meet the needs of specific goals Those user generated
extensions that have been found to be of general utility
have been incorporated into basic NLIS and thus made
available to wide number of users In writing new
subsystem the user takes advantage of number of tools
already part of NLS The use of these tools ensures that

the new subsystems will continue to provide consistent
and coherent user interface

Internally NLS is organized into number of

hierarchically structured modules At the most basic
organizational level NLS is split into two distinct
modules Frontend FE for all interaction with user
and Backend BE for actually performing the commands
specified by the user in hisher interaction with the FE
Communication across the FEBE interface is supported by

protocol modules in both the FE and the BE This

organization allows the FE to be executing on machine
close to the user to provide responsive command
interaction and feedback and allows the BE to be executing
on different perhaps more powerful perhaps
geographically remote machine ld4

The FE and BE are themselves composed of number of

functional modules For example the FE consists of

Command Language Interpreter CLI for parsing



Software Engineering Environment 29292

userspecified commands virtual terminal handling
module the abovementioned protocol module an Operating
System Interface OSI module for performing operating
system and machine dependent operations physical
terminal handling module and other modules The BE

includes the above mentioned protocol module an Operating
System Interface 31 module file system module for

handling the NIJS hierarchical file system formatting
module for formatting the information to be displayed to

the user subsystem backend module for each supported
subsystem and other modules ld5

Most of these modules are themselves divided into number
of different levels At the topmost levels are those
routines and data structures that are available for use by
other modules These routines and data structures maintain

constant interface to the outside world Underneath
these levels are the necessary supporting data structures
and routines ld6

This internal structure of NTJS ie the organization into

number of functional modules with each module divided
into number of levels has proved to be valuable for the

maintenance and development of large system NLS itself
that is under constant evolution by variety of

individuals It also provides readily available wealth
of existing code upon which users can build to create their

own special purpose subsystems The evolution of NLS has
included the continual addition of new features and

subsystems more efficient implementation and the

transporting of NLS to number of different computers and

operating systems

NLS Use by Software Engineers le

is and has been used extensively by the software
engineers at ARC It is used for both its own maintenance
and development as well as for the maintenance and

development of other systems developed by ARC In addition
to the many features of itself which support software
engineers ARC has developed number of tools and

techniques to assist in the software life cycle Some of

the capabilities and features of available to all

users and particularily useful for software engineers
include lel

The consistent user interface Having consistent user



Software Engineering Environment 29292

interface makes it possible with minimal effort to
extend ones knowledge about the available system
making it possible to use more of the system itself lela

The NLS hierarchical file system The NLS file system
naturally supports structured programming techniques
Mditionally the ability to apply clipping functions
to see only certain levels and content searches to
file as it is being viewed makes it very easy to move
around in the information space of programs and

documentation including design documents lelb

The partial copy mechanism for editing files With
this mechanism all edits actually change separate
file the partial copy much like marking up
transparent overlay When user is finishes editing
he can either discard the overlay or he can incorporate
the edits into the basic file Only one person is

allowed to be editing file at time However even
though file is being edited other users may read the

basic file This approach in addition to providing
minimal loss of work across system crashes successfully
avoids the problems associated with multiple people
trying to update the same file simultaneously lelc

The statement signature feature All NLS statements
have associated with them statement signature The
signature consists of the time and date that the
statement was last edited and an identifier of who last
editted the statement This feature is very useful when
maintaining code to find out who was last responsible
for piece of code and when changes were made Other
NIJS capabilities provide mechanisms for finding
statements editted in certain time frame andor by
certain group of users leld

The JOURNTth subsystem Under this recorded dialog
system documents can be distributed to group of

people When document is distributed it is assigned
journal number This number then becomes permanent
attribute of the document and documents can be retreived
at any future time by using this number Indices and

catalogs are also generated automatically at the time
the document is journalized These indices are

generated by author title and keyword Thus there
exists data base for retreiving documents by content
author etc Frequently design documents are

journalized Code is sometimes journalized thus

providing snapshot frozen views of software system lele



Software Engineering Environment 29292

In addition to the capabilities of NLS useful for all
information workers there are number of facilities

specifically for software engineers These include

programming subsystem This subsystem provides
coherent interface between the compilers and languages
used at ARC and the system semiincremental
compilation facility exists that allows dynamic
compilation and link loading to take place at the

procedure level rather than having to compile an entire
file and loading an entire mew system This subsystem
also provides an interface to an interactive debugger
This debugger is part of and is knowledgeable about

many of the data structures supported by Ll the

implementation language for Once again the user

interface to the debugger follows the same discipline as

all other subsystems It is thus very natural
tool to be used by thus who use for all there work le2a

An experimental language editor This editor currently
knows the accepted templates for system documentation
and for the programming structures of Ll the

implementation language for By using these

templates newly written code is guaranteed to have the

proper lexical format and many syntax and typographical
errors are avoided It is easy to envision extensions
of this capability so that an editor is knowledgeable
not only of accepted templates but also of the proper
syntax and semantics of language Such an editor
could easily be used as training aid by programmers in

learning new language le2b

An programming support library subsystem This

subsystem provides for automatic compilation indexing
and printing of source code and documentation files that

have been changed since they were last compiled
indexed etc Audit trails are maintained by this

subsystem so it is possible to determine who has been

working on what and when Additionally if desired
this subsystem can produce catalog of the procedures
composing system This catalog contains not only
procedure names but information about the formal

parameters for each procedure and automatically
extracted documentation about each procedure This

catalog can and is used by other NtIS commands for

moving around the information space of an entire system
that frequently consists of more than one source file le2c

Other tools and techniques used by ARC software engineers



Software Engineering Environment 29292

include metacompilers an informal team approach to

programming with informal walk throughs standards for

coding styles and for documenting changes to NLS
feedback system for dealing with user suggestions and

complaints the exclusive use of high level languages

Most software groups have their own sets of tools
techniques and methodologies What is unique about ARC is

that it provides systematic approach to the problems
New tools and techniques are not developed in vacuum
rather they are designed with the goal of being
incorporated in the existing system The payoffs have been
obvious tools are used readily and thus costs reduced
because they fit in naturally with the other tools the

users are accustomed to using and fulfill needs perceived
by these users le4

We propose to use NLS as the basic framework upon which to
build software engineers environment We need to

examine and determine how NLS has to be expanded in order

to enable better support of this environment leS

Necessary Developments lf

The tools and techniques developed and in use at ARC are

heavily oriented towards the later phases of the software
life cycle Other groups at SRI and elsewhere have
complementary and competitive tools and techniques eg
specification languages and program proving tools and

techniques We need to be able to provide consistent
access to these tools and techniques Such tools may at
first be encapsulated under NLS to demonstrate both the

feasibility and desireability of providing coherent
environment at the possible expense of efficiency This
would involve using NLS as frontend for these tools
Later existing tools may be rewritten to mesh more

closely with the environment and we would expect that

tools would be written explicitly for the environment lfl

Central to the concept of software engineers environment
is the concept of the project data base to keep track of

the status of the modules comprising system All tools
in the environment should either participate in the

generation of this data base or take advantage of the

information in the base Information is often easily
available only at the time tool eg compiler is

executed Thus tools should either interact directly with

10



Software Engineering Environment 29292

this data base or the act of encapsulating tool should
include capturing data known to the tool lf2

Conclusions lg

rich environment for software engineers can decrease the

costs associated with the software life cycle while at the

same time providing higher quality products We propose to

provide the basic framework for such an environment by

expanding and building upon the NLS environment We
propose to define means for incorporating existing tools
and techniques into this environment so that these tools
can all be accessed in consistent and coherent manner
We will initially encapsulate few tools developed by

groups other than ARC to demonstrate the feasibility and

benefits of our approach Finally we propose to define
the project data base and the means for interfacing to

this data base We are not proposing to develop any new
tools other than those for the maintenance and

manipulation of the project data base We feel that there

is already wealth of existing tools and that much can be

gained by providing access to wide variety of tools in

one consistent environment lgl


