[SE——

[

IN DEPTH
GROUPWARE

Working Together

The “human system” and the “tool system” are equally
important in computer-supported cooperative work

Douglas Engelbart and Harvey Lehtman

he emergence of the

personal computer

as a major presence

in the 1970s and
1980s led to tremendous in-
creases in personal productiv-
ity and creativity. It also
caused setbacks in the devel-
opment of tools aimed at in-
creasing organizational effec-
tiveness—tools developed on
the older timesharing sys-
tems.

To some extent, the per-
sonal computer was a reaction
to the overloaded and frus-
trating timesharing systems of
the day. In emphasizing the
power of the individual, the
personal computer revolution
turned its back on those tools
that led to the empowering of
both co-located and distrib-
uted work groups collaborat-
ing simultaneously and over
time on common knowledge
work.

The introduction of local- and wide-
area networks into the personal com-
puter environment and the development
of mail systems are leading toward some
of the directions explored on the earlier
systems. However, some of the experi-
ences of those earlier pioneering systems
should be considered anew in evolving
newer collaborative environments.

Computer Supported Cooperative

ILLUSTRATION: ROBERT TINNEY © 1988

Work (CSCW) deals with the study and
development of systems that encourage
organizational collaboration. Most
groupware products fall under this clas-
sification. CSCW projects can be classi-
fied into three categories: tools for aug-
menting collaboration and problem
solving within a group geographically
co-located in real time (e.g., CoLab at
Xerox Palo Alto Research Center); real-

time tools for collaboration
among people who are geo-
graphically distributed; and
tools for asynchronous col-
laboration among teams dis-
tributed geographically.

In our work at the Augmen-
tation Research Center (ARC)
at the Stanford Research In-
stitute (SRI) International be-
ginning in the mid-1960s, we
developed a system called
NLS (On-Line System) and
tools that supported these
forms of collaboration. How-
ever, we placed the greatest
emphasis on collaboration
among people doing their
work in an asynchronous,
geographically distributed
manner.

Our original goal at ARC
was to “augment” individuals
doing knowledge work. (See
the text box “The NLS/Aug-
ment Architecture” on page
247.) In fact, some of the
tools, techniques, and artifacts we devel-
oped then have become widely used in
personal computer environments. These
include full-screen windowed editing
systems, mouse-controlled cursors, hy-
pertextual linking of documents, and
consistent user interactions across all as-
pects of a system. As timesharing sys-
tems and then wide-area networks (such
continued

DECEMBER 1988 « BYTE 245

IN DEPTH
WORKING TOGETHER

as the ARPANET) were introduced, the
domain we attempted to augment wid-
ened to include groups collaborating in
the same place, as well as over distances
bridged by the networks and over time
bridged by tools for creating a recorded
dialogue among the collaborators.

One of the key strategies at ARC was
the notion of bootstrapping: making use
of available technology to create tools,
techniques, and methodologies for
knowledge workers in general, and the
ARC group in particular, to use in fur-
ther development of the tools. We served
as the developers of the technologies, as
well as the subjects for the analysis and
evaluation of the augmentation system we
had been developing. Many of the sur-
face features of the system appeared in
fancier dress as bit-mapped graphical
hardware that became available first at
Xerox, then later, much more widely, at
Apple.

While it was exciting to see bits and
pieces of the original NLS, now called
the Augment system, appear commer-
cially over the years, many elements of
the system’s conceptual core have only
recently been recognized: outline editors
(for easy manipulation of ideas); hyper-
textual linking capabilities fully inte-
grated into the system; a system of re-
corded group dialogue that transcends
most mail systems; user programmability
and customizability of the system; and,
most important, tools for augmenting not
just individual knowledge workers but
also teams of people both coresident and
distributed over the world interacting
through a networked environment.

We thought that success in creating
tools for collaborative knowledge work
was essential to the necessary evolution
of work groups in increasingly knowl-
edge-rich societies and to increasing or-
ganizational effectiveness. Until the re-
cent growing interest in CSCW, most
developers limited their analyses to tech-
nical issues and ignored the social and
organizational implications of the intro-
duction of their tools; such consider-
ations were, however, key to our work.

There is growing recognition that
some of the barriers to acceptance of
fully integrated systems for augmenting
groups of knowledge workers may be
more significantly social, not solely
technical. The availability of rapidly
evolving new technologies implies the
need for concomitant evolution in the
ways in which work is done in local and
geographically distributed groups.

ARC experienced this phenomenon
continuously. The bootstrapping ap-
proach, so important to the continuing

246 BYTE « DECEMBER 1988

evolution of the system, caused us to con-
stantly undercut our world: As soon as
we became used to ways of doing things,
we replaced platforms to which we were
just becoming accustomed. We needed to
learn new roles, change attitudes, and
adopt different methods because of
growth in the technological system we
ourselves produced.

‘We brought in psychologists and social
scientists to serve as observers and facili-
tators. They were as important to our
team as the hardware and software devel-
opers. The resistance to change, which
we soon realized was an essential part of
introducing new technologies into estab-

R ¥

L Vi
%5@ e brought
in psychologists and
sociologists to serve as
observers.

4]

lished organizational settings, and the
psychological and organizational ten-
sions created by that resistance were ap-
parent in ourselves. We were required to
observe ourselves in order to create ap-
propriate methodologies and procedures
to go along with our evolving computer
technologies.

Our lab was concerned with augmen-
tation, not automation. The choice of this
term was significant. Aspects other than
introducing new technological tools into
the workspace (e.g., conventions, meth-
ods, and roles) are at least as important to
the success of any CSCW system. The el-
egant tools available now and in the fu-
ture—superlative graphics, artificial in-
telligence services, and so on—only
make sense in an integrated workshop of
tools in which information may be ex-
changed. The tools in such an integrated
workshop need to be conceptually and
procedurally consistent.

We expect that as tools are introduced
and used, a co-evolution will occur be-
tween the tools and the people using
them. Thus, WYSIWYG systems eased
the acceptance of computer systems by
nontechnically oriented users; however,
these systems produce a map of what you
would see on paper as opposed to a hy-
perdocument with structural links evolv-
ing over time. We are now seeing the in-
creasing acceptance of other presentation

metaphors (such as Apple’s HyperCard
and Owl International’s Guide) incorpo-
rating some of the nonlinear linking ca-
pabilities that were present in Augment.

The architecture and character of
Augment were directly oriented toward
augmenting the capability of humans to
deal with tough knowledge work and to
process effectively the large volumes of
information with which knowledge
workers must deal. A subgoal was to sup-
port active collaboration among groups
of workers. To gain experience with the
issues and needs associated with this
support, we developed and operated the
Network Information Center (NIC) for
the original ARPANET user and re-
searcher community.

Creating a Collaborative System

The following elements are necessary in-
gredients in a system designed to support
collaboration in a community of knowl-
edge workers. The sequence represents
an explicit progression that begins with
tested techniques whose ‘‘cultural
shock” and financial investment are rel-
atively low; it proceeds through paced,
open-ended evolution with time, experi-
ence, and perceived payoff toward tools
and techniques that involve a greater in-
vestment in both financial and social
areas.

® Collaborative dialogue. Computer
tools for the composition of messages and
for their subsequent reviewing, cross-
referencing, modification, transmission,
storage, indexing, and full-text retrieval
are a necessary part of a CSCW system.
A “message” in such a system can be of
any length. It can contain formalized ci-
tations pointing to specific passages in
prior messages, so that a group of related
messages becomes a network of re-
corded-dialogue contributions.

There should also be automatic mes-
sage delivery; full cataloging and index-
ing; on-line accessibility both to message
notification and to the full text of all
messages; and open-ended storage of the
dialogue records. These services enable
a community of people who are distrib-
uted in space and time to maintain effec-
tive, recorded, collaborative dialogue in
a manner that qualitatively differs from
most ordinary electronic-mail systems.

With Augment, real-time remote dia-
logue (teleconferencing) was supported
by a “shared screen” facility through
which users could “link up” their dis-
plays; each party to the link sees a com-
mon display view. Any party to the link
is able to point to or control or execute

continued

IN DEPTH
WORKING TOGETHER

The NLS/Augment Architecture

he On-Line System, or NLS, was

designed to support members
working in varied disciplines, including
software engineers, managers, and so-
cial scientists. There were core tools
used by all these knowledge workers, as
well as specialized tools developed for
particular requirements. All the tools
shared the commonality of design prin-
ciples that we thought essential to the
success of what we termed a knowledge
workshop. Early development began in
1963 and proceeded until 1976. (See
photo A.)

The physical environment on which
Augmentation Research Center (ARC)
members (and collaborators across the
country) worked evolved along with our
system and externally available technol-
ogies. Back when the project started,
display technologies were extremely
primitive: Most people were still using
punched cards and paper tape. Few
computer users had direct access to a
computer.

A Revolutionary Console
In that context, the NLS terminals were
especially revolutionary. The display
consoles were equipped with typewriter-
like keyboards, a five-finger keyset for
one-handed character input, and a
mouse, invented in our lab, for cursor
control (see photo B).

The keyset was useful for most mem-
bers of ARC, as commands were gener-
ally recognizable by single-character

mnemonics, with appropriate feedback
provided by the system. Most team
members became proficient at one-hand
text input, leaving the other hand avail-
able for cursor control by means of the
mouse as they moved through the in-
formation space on their terminal
screens.

Initially, screens were generated on
small CRTs in our machine room and
transmitted via closed-circuit television to
the ARC workstations. Later on, as char-
acter-based displays became commer-
cially available, we created external
boxes to those terminals for attaching
mice and keysets and controlling the cur-
sor and screen updates in the manner re-
quired by our essentially nonlinear sys-
tem devices, which were developed
principally as “glass teletypewriters.”

Those boxes, or line processors, were
eventually made available to users over
the ARPANET so they could experience
the display-based version of NLS. How-
ever, because of the initially limited
availability of displays, we also created
a typewriter version of the system
(TNLS), which had a complete mapping
of the display NLS (DNLS) interface
and permitted ready access to informa-
tion across the country through the then
more cost-effective typewriter ter-
minals.

NLS was the core workshop software
application system. It centered around
the composition, modification, and
study of structured textual material.

Graphics were available in a primitive
manner on the early terminals; the later
line-processor-based systems made
graphics available on additional, exter-
nal graphics displays.

The type of bit-mapped graphics sys-
tems and hard-copy printers readily
available today were not available to us
at the time, although later evolutions
of our file-system content architecture
could accommodate graphical entities
as data nodes. Moreover, there were im-
portant areas associated with the text
domain that needed exploration.

A Hierarchical Structure

The underlying NLS document archi-
tecture was hierarchically structured;
the structure of a file was separated
from its content. Originally, content
nodes were strictly textual in nature;
eventually, each structural node re-
ferred to a property list of content nodes
of varying types, including other hier-
archies (i.e., text, graphics, code, and
SO on).

The structure made for rapid naviga-
tion through the information space
created by a file or collection of files. Its
complexity was hidden from novice
users (who didn’t need to know about its
implementation and, in fact, could ig-
nore the hierarchy if they wished as they
created linear documents in the NLS
editor).

However, more sophisticated users

continued

Photo A: A 1967 augmented
meeting. This configuration is
similar to more current sustems,
such as Xerox PARC’s CoLab.

DECEMBER 1988 * BYTE 247

IN DEPTH
WORKING TOGETHER

could address any point in any file
throughout a network via a link—a syn-
tactic address, which could be em-
bedded anywhere in other files. These
links were essential to the first imple-
mentation of the sort of system later
called hypertext by Ted Nelson. (See
the October BYTE.)

The basic node in an NLS file was a
statement, most often used to represent
a paragraph in text, a line of code in a
program. The user could impose filters
on the content or structure through tools
either built into the system (view speci-
fications) or installed through a user-
programming facility. Thus, users
could look at a particular number of
lines of those statements at a particular
level in a file. This facility was similar
to those in so-called idea processors,
such as Living Videotext’s More. Asso-
ciated with each statement was the date
and time of its last edit as well as the
identifier of the community member
who created or edited it. Document fil-
ters over authors and time could also be
installed.

Because of the collaborative nature of
the development of NLS, there were
tools and conventions for group author-
ship. Only one person could have write-
access to a file at a time. Other team
members could have read access to the
file, minus the edits currently being
made. A lock was placed on a file being
written; if another team member ac-
cessed the file or attempted to write on
it, that person would be told who had the
file locked.

Photo B: A display NLS
workstation with video overlay. Note
the chord keyset input device used
as a supplement to the keyboard.
(The mouse may be seen in the
video overlay on the screen.)

A Variety of Tools

NLS had tools for moving through the
information space, using the mouse to
select locations on the screen or the ad-
dressing capability (using the link syn-
tax) to specify locations not directly ac-
cessible from the screen. You could
jump to locations related to structural
entities (successor, predecessor, and so
forth), or you could jump via links by
pointing to a textual link in a file or typ-
ing one in when prompted. Users could
have up to eight windows on a screen
with different files or different parts of
the same files visible. Material could be
copied across windows.

Programmers had access to a number
of languages we created: Tree Meta, a
compiler-compiler, was used to boot-
strap us onto different machines (XDS
940, PDP-10, PDP-11, and DEC 20)
and to create the other compilers and as-
semblers we used. L10 was a block-
structured language with pattern-
matching and string-construction
facilities. The same pattern-matching
syntax was used by less sophisticated
users to generate filters in the core
workshop. The Command Meta Lan-
guage (CML) was used to create user in-
terfaces that were independent of termi-
nal type (display or typewriter) and
individual user preferences. CML
grammars were interpreted. Contextual
entries into syntactic and semantic help
systems were generated from the CML
grammars. The Output Processor inter-
preted a comprehensive document-for-
matting language.

/\s» g S

)

Programmers could look at proce-
dures on the display and, encountering a
reference to another procedure, jump to
it. If it was not within the currently open
file, the jump took place indirectly
through a procedure catalog automati-
cally generated by the automated pro-
gram librarian.

The program librarian operated over
system databases at night (or whenever
it was invoked). If a code file had been
modified, it would be automatically
compiled; if all compilations took place
without error (errors were recorded in
other NLS files), a new system would be
linked and created. The catalog was
sorted alphabetically and, in addition to
links to the files containing the proce-
dures, included comments and calling
sequences that were extracted from the
procedure.

Programmers could view and modify
procedures, compile them indepen-
dently into their own address spaces,
and automatically “replace” the exist-
ing versions of the procedures in the
system to try out variations. Users could
install (automatically when entering the
system) alternative versions of standard
system procedures. A symbolic debug-
ger could be called up in a separate win-
dow, and breakpoints could be set by
pointing at procedure names in the
source-code file with the mouse.

We had tools for creating recorded di-
alogues with other users: Our Journal
provided the usual message-passing fa-
cilities available on other timesharing
and networked systems. However, we

S ——

248

BYTE « DECEMBER 1988

IN DEPTH
WORKING TOGETHER

could also submit larger documents or
parts of them for permanent storage and
retrieval or for the information and col-
laboration of other users. Shorter mes-
sages could be transmitted directly to a
user’s Initial File (the file seen on enter-
ing the system, similar to the desktop on
current systems). Citations to larger
documents would be delivered.

On seeing one of those citations,
which included links to the document’s
location in the Journal, a user could
Jjump to that document. The documents
in the journal were permanent, read-
only records of the dialogue within the
community. Links to these documents
were created, and evolving commentary
on the design and implementation issues
were always available. These facilities
are similar to those currently advocated
as “hypertext publishing systems.”

NLS also had tools for interactive
real-time collaboration. For example,
users could link their terminals together
and share screens; this made it possible
for them to view the same material and
collaboratively edit it.

As the ARPANET became available,
we were among its first users. We found
it necessary to tune the network to the
then unique characteristics of our high-
ly interactive system. It was also useful
to separate the architecture of the sys-
tem into a front end (which handled the
user-interface interactions) and a back
end (which handled the execution of
commands).

The front end could operate on a sep-
arate machine and communicate with
back-end resources through a network.
Commonly used resources could be res-
ident on the front-end machine; re-
sources that were most usefully shared
would reside on the back end.

We also created the Network Infor-
mation Center (NIC) at the Stanford Re-
search Institute to serve as an informa-
tion resource for the emerging
ARPANET. We used our tools to create
the ARPANET Resource Directory,
which was made available in both on-
line and hard-copy form.

NLS included facilities for document
development, production (including
early computer phototypesetting facili-
ties), and control. These facilities incor-
porated tools for successive refinement
and editing by teams of writers, editors,
and reviewers and were built on other
parts of the core workshop, such as the
editor, Journal, and programming
tools.

any of the capabilities of the workshop.
Such capabilities assume a high degree of
responsiveness and bandwidth in the
communication channel in order to sup-
port the high degree of interactivity in
the system. (Our developments in this
area required extensive tuning of the
original ARPANET algorithms.)

® Document development, production,
and control. This system capability in-
cludes tools for composing, studying,
and modifying document drafts and for
high-quality photocomposition. In addi-
tion to the page-layout tools that have be-
come widely available, Augment offered
tools for collaboration between several
authors and editors in the process of
evolving a final draft. These included
tools for controlling changes, new ver-
sion distribution, and automatic index
generation for complex documents or
sets of documents.

Page-layout programs such as Page-
Maker have entered widespread use in
recent years. However, the tools for col-
laborative control of other aspects of a
document’s evolution are equally impor-
tant. Augment permitted establishing su-
perdocuments that were hypertextually
linked combinations of the whole or parts
of many pieces of information. This link-
ing implies and reflects underlying
meaning in ways that mere typesetting,
which deals primarily with layout, can-
not. While the typeset, WYSIWYG view
should be available, it should not be the
only way to view a document in its larger
sense.

We also assume the need for tools to
authenticate submissions and comments,
provide administrative support to edi-
tors, offer sequential delivery and track-
ing for approval chains, and show auto-
matic ““ticklers” to those who do not
respond to requests for comments, modi-
fications, and approvals.

A backlinking facility within the re-
corded dialogue system is also necessary
to handle superseding of old documents
by new. Recent versions of the Augment
Journal provide such a capability, per-
mitting users to request current or older
versions of an evolving document.
® Research intelligence. The tools within
the Collaborative Dialogue Support Sys-
tem for cataloging and indexing inter-
nally generated items should also sup-
port managing externally generated
items—bibliography, contact reports,
clippings, notes, and so forth.

With centrally supplied (and hence
uniformly available) services such as
these, a community can maintain a dy-
namic and highly useful “intelligence”
database to help it stay up-to-date on ex-

ternal happenings that affect it. Citations
of external items from within the inter-
nally generated dialogue base, in the
form of annotations, commentary, or
supportive references, offer computer-
sensible interlinking of the external in-
formation with the internal information
and facilitate browsing, retrieval,
searching, back-citation, and so on.

® Community handbook development.
This includes extending this research
service toward the coordinated handling
of a very large and complex body of
documentation and its associated exter-
nal references. This material, when inte-
grated into a monolithic whole, may be
considered a ‘“superdocument.” Tools
for the responsive development and evo-
lution of such a superdocument by many
(distributed) individuals within a disci-
pline- or project-oriented community
could lead to the maintenance of a “com-
munity handbook,” a uniform, com-
plete, consistent, up-to-date integration
of the special knowledge representing
the current status of the community.

The handbook would include princi-
ples, working hypotheses, practices,
glossaries of special terms, standards,
goals, goal status, supportive argu-
ments, techniques, observations, how-
to-do-it items, and so forth. An active
community would be constantly involved
in dialogue concerning the contents of its
handbook. Constant updating would pro-
vide a “certified community position
structure” about which the real evolu-
tionary work would swarm; flexible tools
for on-line navigation and view genera-
tion would be very important, as would
the facility for generating hard-copy
equivalents.

The “handbook cycle” includes the
incorporation of ongoing dialogue and
intelligence mediated by professional fa-
cilitation to create evolved versions of the
community handbook.
® Computer-based instruction. We as-
sume that the special training needs of a
community of collaborating knowledge
workers will be supported by computer-
based instructional tools. These would
make use of the other knowledge work-
shop services described, especially dy-
namic filtering of the community hand-
book.

A “shared screen” facility is useful
for instruction so novices can get access
to expert users or coaches in parts of the
system for which other instructional
tools are inadequate and for which local
teachers are unavailable. Having an ex-
pert take you along for a ride is an ex-
tremely effective learning technique.

continued

DECEMBER 1988 * BYTE 249

IN DEPTH
WORKING TOGETHER

« Meetings and conferences. At ARC, we
made extensive use of augmentation tools
in our local and distributed meetings.
Projected display images, video over-
lays, and split-screen image superimpo-
sition were first used to great effect by
Engelbart in the 1968 IFIP Fall Joint
Computer Conference in San Francisco.
Dynamic control of the agenda and the
collaborative creation of position papers
are some typical uses of these services.
® Community management and organi-

zation. Conventional project-manage-
ment operations can be augmented
through the use of computer-based proj-
ect-management tools with the enriching
services of dialogue support, document
development, and the handbook, which
would include plans, commitments,
schedules, and specifications.

e Special knowledge work by individuals
and teams. The tools supporting a col-
laborating community should be avail-
able to the team members in their roles as

C_talk

Add a new dimension to your C compiler.

The Practical Union
of C and Smalltalk

From C:

M Ease of application delivery -
portability

M Performance - speed and efficiency of C

B Familiarity of C - use all your existing
C code

Boost Your Productivity! C_talk’s practical approach to object-oriented program-
ming in C allows you to realize substantial productivity gains using these tools:

B C_talk's Browser - a powerful
Smalitalk-like browser for building
software objects

5

d_ wbpee
7 Add anObjec 1o the reociver st If the object s alrady in the st
7 them do. nothing M

@ mewObjes = The id of the object b insert inio the set.

Why C_talk?

C_ talk has been proven successful in
delivering several large-scale systems in
demanding realtime environments. It's
concise, easy to learn and use. !t is
programming in C (not a new language).
while adhering to the Smalltalk paradigm.

C_talk is the practical, and affordable,
union.

C__talk is designed to operate with MSDOS on IBM or
compatible computers. At least 512K of memory. a hard
disk and mouse are recommended

PN’ ...providing and advancing
Wl b object-oriented methodology.

C__talk is a trademark of CNS

From Smalltalk:
B Data abstraction - data
hiding / encapsulation

B Full object inheritance

M Polymorphism — message sending
with dynamic binding

B An automatic Make utility - for
building applications

B A Preprocessor — for converting
objects into C source code.

B A set of Foundation Classes - to use
as basic building blocks.

g ‘..

Order today!

Call or write:

CNS, Inc.

Software Products Dept.
7090 Shady Oak Rd.
Eden Prairie, MN 55344
Tel: (612) 944-0170
Fax: (612) 944-0923

Add for shipping $5 US, $25 Int'l.
(30-day money-back guarantee)

CNS is a registered trademark of CNS, Inc

250 BYTE « DECEMBER 1988

Circle 56 on Reader Service Card (DEALERS: 57)

individuals and members of other teams.
A user-programming facility in Aug-
ment made it possible for individual
users to customize parts of the system ac-
cording to their needs and abilities. Some
of these specialized extensions became
part of the more widely available tools
for the entire workshop community.

A Formula for Success

As Augment evolved, we realized some
assumptions that we think are applicable
to any successful CSCW system:

® Coordinated set of user-interface prin-
ciples. There should be a common set of
principles over the many application
areas. This does not mean that the user
interface itself is necessarily the same
across all domains. It does mean that a
common underlying style of communica-
tion is present. While each domain with-
in the core workshop area or specialized
application system may have a vocabu-
lary unique to its area, this vocabulary
should be used within language and con-
trol structures common throughout the
tool environment. Users learn new func-
tions by increasing vocabularies, not by
learning separate “foreign” languages.
When in trouble, they will invoke help or
tutorial functions in a standard way.

This point has become apparent in the
Apple Macintosh environment. Users of
different applications have a common
method of interacting with each applica-
tion. This makes it easier to learn new
applications and to move between sys-
tems.

A single interface metaphor is neither
required nor ideal. Interaction styles
suitable for a particular application do-
main and user group may differ from
those for other domains and users.
Apple’s HyperCard provides an example
of an environment that offers interaction
metaphors different from the original
Apple Desktop with minimal confusion
to users.
® Grades of user proficiency. Users who
are not experienced in using the system
are part of the community; they will
want to be able to get at least a few
straightforward things done with a mini-
mum of learning. Even an expert user in
certain domains of the collaborative
workshop environment will be a novice
in less frequently used domains. Atten-
tion to novice-oriented “easy to use” fea-
tures is required.

However, users should be rewarded
for their increasing proficiency with a
rich tool environment that offers ad-
vanced vocabularies and the opportunity

continued

Looking for a

Personal
Information
Manager?

“Look no further. . .
PC-OUTLINE 7//0?/’ ™

is the one to buy!”
PC Week

PC-Outline Plus is an intuitive tool
that manages words, projects,
thoughts, ideas, people and, yes
.. . your productivity.

ith astounding efficiency,
speed and ease!

PC-Outline P/
It thinks of things
you’re too busy to
think of.

For instance, putting rgndom
information in its rightplace.
It does to ideas, tasks and
projects what spreadsheets
do to numbers.

*Qur ShareWare versions are older versions of the product,

"%;‘g

> s

PCQUILINE >

The text editing features are so
Bowerful you can actually use
C-Outline Plus as your pop-up
word processor!
Here are just a few of the many
features that make PC-Outline Plus
““the one to buy”’:
s Powerful Word Processor ~ ® 9 windows
capabilities = Prioritizing
= Qutlining features ® Macros
= Project manager = Memory Resident
= Category view/sort option
® WordPerfect® WordStar® & @ Autosave
MS Word® user-interfaces ® And MORE!
= FREE and TOLLFREE
support for 1year

We call this feature “Hide &
Show.” You’ll call it a godsend.
With the touch of a key, suddenly
an outline shows only the essential
points. One keystroke will reveal
the details again.

but are full-featured & fully-functional and yours to try for a FREE 30 day evaluation period.

© Copyright 1988 Brown Bag Software, Campbell CA 95008

Circle 283 on Reader Service Card

READ THIS.

A little skeptical?

Get a copy of PC-Outline to try for
30 days. (And while you're at it,
pass copies around to your friends
and associates for their evaluation.)
If not totally sold on us, don’t pay
us a cent.*

No risk. No hassles. No fooling!
(This free 30 daﬁ evaluation period is
available on all Brown Bag Software®
products.)

Lotus®? Load US!

Quantity discount and site licenses available.
To order call:

800-523-0764
In California, call (408) 559-4545.
Introductory Price:

31 (750 shipping & handling
95 CA residents add sales tax)

Brown Bag Software®
File #41719, Box 60000
San Francisco, CA
94160-1719 X @ Bl

BROWN

BAG

™

State-Of-The-Smart™

Offices in London 01831 1106 —
Koln 0221 7710923 —Copenhagen 01 933837 —
Amsterdam 020 233408 — Ziirich 01 2146224

DECEMBER 1988 - BYTE 251

Subscription
Problems?

We want
to help!

If you have a problem
with your BYTE
subscription, write us
with the details. We'll
do our best to set it
right. But we must
have the name,
address, and zip of the
subscription (new and

old address, if it's a
change of address). If
the problem involves a

payment, be sure to
include copies of the
credit card statement,

or front and back of
cancelled checks.

Include a “business

hours" phone number if
possible.

BVTE

Subscriber Service

PO. Box 7643
Teaneck, NJ 07666-9866
"
i

252 BYTE « DECEMBER 1988

IN DEPTH
WORKING TOGETHER

for individual customization in every
specialized domain.

® Fase of communication among, and
addition of, workshop domains. We
think that there will be many different
parts of an augmented-knowledge work-
shop, each with its own tools. You should
never be bound to isolated areas of the
workshop. It should be possible to move
and communicate information between
domains easily. It should also be possible
to install new tools as needed.

e User-programming capability. Users
must be able, with various levels of ease,

v
L ¥
T

YWY ecant
ignore the social
implications of our
technical progress.

to add or interface new tools and extend
the language to meet their needs. They
should be able to do this in a variety of
programming languages in which they
may have training, or in the basic user-
level language of the workshop itself
(e.g., through a macro facility.)

® People-support services. The com-
puter-based tools will be insufficient by
themselves. The CSCW technologies
will create opportunities and needs for
highly specialized professional services,
such as database design and administra-
tion, training, cataloging, and retrieval
formulation.

® Recognition of standards for informa-
tion interchange and ranges of hardware.
We should not have to assume the pres-
ence of a particular type of machine in a
user’s work environment. It should be
possible to exchange information and get
a reasonable representation of the infor-
mation shared across system environ-
ments.

® Careful development of methodologies.
The elements involved in augmenting
communities of knowledge workers in-
clude the development of both “tool sys-
tems” and “human systems” (the set of
skills, methods, languages, customs,
procedures, training, and organization
structures needed for effective use of
tools). New technologies, even those
such as CSCW that aim at improving
group interaction, contribute directly
only to the tool system. The cultural evo-

lution that led to the current state of the
human system took place with a very
primitive tool system.

As much care and attention needs to be
paid to developing the procedures and
methodologies associated with the peo-
ple-support services and the organiza-
tional and societal effects of introducing
new technologies as is spent on develop-
ing the technologies themselves.
® Co-evolution of roles and organiza-
tional structures and technologies. The
widespread availability of successful
CSCW services will create the need for
new organizational structures and roles.
These structures and roles need to co-
evolve with the technologies. For exam-
ple, we found there was a need for what
we called knowledge-workshop archi-
tects who served as “change agents” in
introducing new technologies into their
organizations.

To take advantage of the radical,
emerging tool-system inventions associ-
ated with CSCW, it is inevitable that the
evolution of the human system will begin
to accelerate. The optimum design for
either a tool system or a human system is
dependent on the match it must make
with the other. The high degree of mu-
tual dependence implies that a balanced
co-evolution of both is necessary. The
bind we are in is that our society encour-
ages and rewards progress in the techno-
logical and material sense and often ig-
nores the human and social implications
of that progress. ®

FURTHER READING

Ambron, Sueann, and Kristina Hooper. In-
teractive Multimedia. Redmond, WA:
Microsoft Press, 1988.

Greif, Irene. Computer-Supported Cooper-
ative Work: A Book of Readings. San Ma-
teo, CA: Morgan Kaufman Publishers,
1988.

Johansen, Robert. Groupware: Computer
Support for Business Teams. New York:
Free Press, 1988.

Grimsdale, R. L., and F.F. Kuo, eds.
Computer Communication Networks.
Leydon: Noordhof, 1975.

Goldberg, Adele, ed. A History of Personal
Workstations. New York: ACM Press,
1988.

Rheingold, Howard. Tools for Thought.
New York: Simon and Schuster, 1987.

Douglas Engelbart, a senior scientist at
McDonnell Douglas, recently created the
Bootstrap Institute to further CSCW re-
search. Harvey Lehtman is manager of
the New Media Group at Apple Com-
puter. They can be reached on BIX c/o
“editors.”

